CS/MCA(A)/EVEN/SEM-2/2527/2022-2023/I130

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

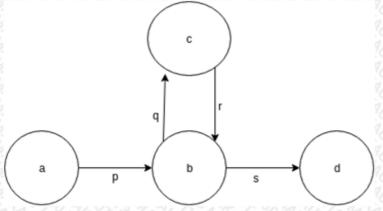
Paper Code : MCAN-E205F Automata Theory & Computational Complexity

UPID : 002527

Time Allotted : 3 Hours

The Figures in the margin indicate full marks.

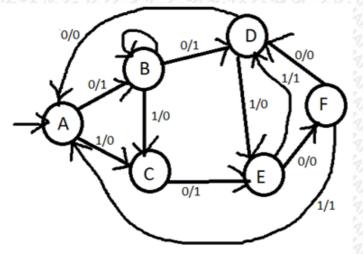
Full Marks :70


 $[1 \times 10 = 10]$

Candidate are required to give their answers in their own words as far as practicable

Group-A (Very Short Answer Type Question)

1. Answer any ten of the following :


- ⁽¹⁾ Find the string which is obtained by the language L = { $a^i b^{2i}$ | $i \ge 1$ }.
- (II) What will be the interaction of the sets {3, 5, 9, 10, 4, 7} and {1, 2, 10, 9, 3, 6, 8, 4}
- (III) Write the mapping of Transition function of NFA.
- (IV) Why does a palindrome cannot be recognized by a Finite State Machine?
- (V) What is E-closure of a state q0?
- (VI) Let P: I am in Bangalore.; Q: I love cricket.; Write the compound statement.
- (VII) What is a Non-regular language?
- (VIII) Write the closure property of Context Free Language.
- ^(IX) If d is a final state, break the strings in terms of Pumping Lemma.

- (X) What is the condition that a Turing machine will halt?
- (XI) Find the property for R, where R be a relation on the set N of natural numbers defined by nRm if n divides m.
- (XII) Write the output functions for Mealy and Moore machine.

	Group-B (Short Answer Type Question)	
	Answer any three of the following :	[5 x 3 = 15]
2.	Write down the properties of Relations.	[5]
3.	What is DFA and NFA? Explain with example.	[5]
4.	Design an NFA in which all the string contain a substring 1110.	[5]
5.	Let G=({S, A}, {0, 1, 2}, P, S}, where P consists of S \rightarrow 0 S A 2, S \rightarrow 0 1 2, 2 A \rightarrow A 2,	[5]
	$1 \text{ A} \rightarrow 1 \text{ 1}$. Show that, L(G) = $\{0^n 1^n 2^n \text{ I} n \ge 1\}$	
6.	What is the 0/1 Knapsack Problem? Solve the problem using 0/1 knapsak problem where: Input: N = 3, W 4, profit[] = $\{1, 2, 3\}$, weight[] = $\{4, 5, 1\}$.	= [5]
	Group-C (Long Answer Type Question)	
	Answer any three of the following :	[15 x 3 = 45]
7.	(a) Design an NFA with $\Sigma = \{0, 1\}$ in which double '1' is followed by double '0	[5]
	(b) Design an NFA with $\Sigma = \{0, 1\}$ accepts all string in which the third symbol from the right end is always 0.	[5]
	(c) DFA of all those Strings that do not contain the substring 110	[5]
8.	(a) What are the closure properties of Regular sets? Explain.	[5]
	(b) Find a grammar generating $\{a^{j} b^{n} c^{n} \mid n \ge 1, j \ge 0\}$.	[5]

- (c) Let G=({s, C}, {a, b}, P, S), where P consists of S \rightarrow aCa, C \rightarrow aCa I b. Find L(G)
- 9. (a) Find what type of machine the following diagram depicts. Convert the machine into its equivalent machine which outputs only depends on states.

	(b)	Design an NFA that accepts set of all strings over 1101.	[3]
	(c)	Design a Mealy machine that gives output as 2's complement of any input binary string (Assume that last carry bit is neglected). Discuss the design also.	[7]
10.	(a)	Find the derivation and corresponding parse tree for the string (0 \cup (10) 1) $$. Use Type 2 grammar to solve the problem.	[5]
	(b)	 Consider the language L = {amb2nc 3ndp : p > m, and m, n ≥ 1}. (i) What is the shortest string in L? (ii) Write a context-free grammar to generate L. 	[10]
11.	(a)	Design a NPDA for the language L ={w \in {a,b}* w contains equal no. of a's and b's}	[7]
	(b)	Define what is a Turing Machine. Construct a Turing machine for L={0 ⁿ 1 ⁿ n>=1}	[8]

*** END OF PAPER ***

[5]

[5]